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Abstract-Buoyancy effect in an internally heated horizontal fluid layer is considered under the linear stability 
analysis. The horizontal fluid layer is confined between a rigid adiabatic lower boundary and a rigid isothermal upper 
boundary. The onset of thermal convection is analyzed by using the propagation theory which transforms; partial 
disturbance equations into ordinary ones similarly under the principle of exchanges of stabilities. The eigenvalue 
problem is solved by the method of rapidly' converging power series. In addition, the connection of stability condition 
to the fully developed heat transport is investigated. Results show that the critical time to mark cellular convection 
has increased with a decrease in the Prandtl number. Based on the present stability criteria, a new correlation of 
the Nusselt number is produced as a function of both the Rayleigh number and the Prandtl number. It is shown 
that the present correlation on thermal convection compares reasonably with existing experimental data of wa- 
ter. 
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INTRODUCTION 

From the beginning of this century the convective motion driv- 
en by buoyancy forces has attracted many researchers' interests. 
Benard [1901] conducted systematic experiments on the onset 
of natural conw~ction in a horizontal fluid layer. Later, Lord Ray- 
leigh [1916] showed that the buoyancy-driven convection can oc- 
cur when the adverse temperature gradient exceeds a certain 
critical value. Thereafter, many researchers analyzed the onset 
condition of buoyancy driven convection in fluid layers heated 
from below or cooled from above. Extensive results for the var- 
ious systems have been summarized by Chandrasekhar [1961] 
and Berg et al. [1974]. 

Kulacki and Goldstein [1975] extended the stability analysis 
to the horizontal fluid layer heated by internal heat sources. It 
is well-known that thermal convection problems driven by energy 
release from distributed volumetric energy sources appear to play 
an important role in wide variety of engineering applications, such 
as geothermal reservoirs, chemical reactors and heat removal of 
nuclear power plants. 

When an initially quiescent horizontal fluid layer system is heat- 
ed rapidly, buoyancy-driven motion sets in before the basic tem- 
perature field is fully-developed. Therefore, in case of rapid heat- 
ing the basic temperature profile of pure conduction becomes 
time-dependent. To analyze this kind of thermal instability in hor- 
izontal fluid layers several theoretical methods haw~ been pro- 
posed: the amplification theory [-Foster, 1965], the energy method 
[Wankat and Homsy, 1977], the stochastic model [Jhavery and 
Homsy, 1982] and the propagation theory [-Choi el al., 1984]]. 
The amplification theory treated the time dependency as an initial 
value problem. ]'his method is quite popular, but it involves arbi- 

tTo whom all correspondences should be addressed. 

trariness in choosing both an initial condition and its amplification 
factor to mark the onset of motion. The propagation theory, pre- 
dicts the conditions to mark the onset time deterministically, it 
employs the thermal penetration depth as a length scaling factor 
and transforms the linearized disturbance equations into the simi- 
lar forms. Its prediction has been coincident with the various ex- 
perimental results in deep-pool systems experiencing rapid heat- 
ing, such as laminar forced convection EKim et al., 1990; Choi 
and Kim, 1990], laminar natural convection [Chun and Choi, 
1991] and also double-diffusive convection [-Yoon et al. 1995]. 

Another important problem in buoyancy-driven phenomena is 
the heat transfer characteristics in thermally fully-developed state. 
To analyze this problem Howard E1964] proposed the boundary- 
layer instability model in which the heat transfer for very high 
Rayleigh numbers has a close relationship with stability criteria. 
Based on Howard's concept, Long [1976] and Cheung E1980] 
introduced backbone equations to predict the heat transport in 
horizontal fluid layers. By incorporating their :stability criteria into 
the boundary layer instability model Choi et al. [1989] and Kim 
and Choi [1992] have derived new heat transfer correlations for 
various systems. Based on the microscales of turbulent flow Ar- 
paci E1994] proposed a new buoyancy-driven heat transfer model 
for fully developed-turbulent state. 

In the present study, the stability criteria of the onset of regular 
cell-type motion in a horizontal fluid layer with uniform energy 
sources is analyzed by using our propagation theory. And based 
on the stability criteria and Arpaci's heat transfer model, a new 
heat transfer correlation is derived and also compared with the 
existing experimental results. This research shows that the pro- 
pagation theory we have developed can become a theoretical base 
in understanding buoyancy-driven phenomena. 
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Fig. 1. Schematic diagram of the present system. 
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STABILITY ANALYSIS 

1. Governing Equations 
The system considered here is an initially quiescent horizontal 

fluid layer of depth "d" with an adiabatic lower boundary and 
isothermal upper boundary. Before heating the fluid layer is main- 
tained at uniform temperature To for time t<0. For time t->0 
the layer is heated internally with the uniform volumetric heat 
generation rate S. Here we employ the Cartesian coordinates with 
the downward distance Z. The schematic diagram of present sys- 
tem is shown in Fig. 1. In this system the governing equations 
of flow and temperature fields are expressed by employing the 
Boussinesq approximation, as follows: 

V .~  0 (1) 

{O + i] 'V}U = - ~1 VP+ vV2U + g[lTk P, (2) 

{ ~  + 0 . v } T = a v 2 T _  ~ S p,Cp (3) 

where !~ is the velocity vector, T the temperature, P the pressure, 
p the viscosity, a ~:he thermal diffusivity, g the gravitational accel- 
eration, p the density, Cp the specific heat, fl the thermal expan- 
sion coefficient. The subscript "r ~ represents the reference state. 

The important parameters to describe the present system are 
the Prandtl number Pr and the Rayleigh number Ral defined 
by 

Pr = - v  and Ra,= glBSdS (4) 
a kctv 

where k and v denote the thermal conductivity and the kinematic 
viscosity, respectively. In case of slow heating the basic tempera- 
ture profile is parabolic and time-independent and its critical con- 
dition is well represented by 

Rat, = 2,772 (5) 

But for a rapid heating system of large Rat, the stability problem 
becomes transient and complicated, and the critical time t, to mark 
the onset of buoyancy-driven motion remains unsolved. For this 
transient stability analysis we define a set of nondimensional var- 
iables r, z, 00 by using the scale of time d2/a, length d and temper- 
ature Sd2/k. Then the basic conduction state is represented in 
dimensionless form by 

00o _ 020o +1 (6) 
Or 0z 2 

with the following initial and boundary conditions, 

00(0, z)=0o(r, 0 ) = ~  ~0~ (r, 1)=0 (7) 
O z  
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Fig. 2. Basic temperature profile. 

Exact Solution 
Integral Method 

1.15 2.0 

By using the conventional separation-of-variables technique, the 
above conduction equation can be solved as follows: 

z 16 ~ 1 . ~(2n+ I) 

\ 2 / " . = 0 ( 2 ~ s m 1 ~  "zf 

X exp{ (2n+ 1)2rr2 z} (8) 
4 

For deep-pool systems, the Leveque-type solution can be obtained 
as follows ECarslaw and Jaeger, 1959]: 

[ 1 2\ 1 2] 0 0 = V L ~ l + ~ - q 2 ) e r f ~ - ~ ] + ~ q  expl , -~-q  ) - ~ - q  ] (9) 

where r I = z/v~. Fig. 2 shows that the above equation is in accord 
with the exact solution of (8) in the short period of time (r<0.1). 
Therefore the solutions of (8) and (9) can be considered as exact 
ones for deep-pool systems. And the Eq. (9) suggest that the pa- 
rameter rl(= z/v~.) play important role in analyzing the onset of 
thermal convection. Since we are primarily concerned with the 
deep-pool case of large Ral and small r, the above Leveque type 
solution (9) represents the basic temperature profile quite well 
But for the mathematical convenience in the present stability anal- 
ysis we simplify the basic temperature profile by using the inte- 
gral method [Eckert and Robert, 1972] as follows: 

0,, = r[  1 - (1 - ~)3] [ 1 - U~_ ~] (10) 

where ~=z/5.U~ 1 is the unit step function having the zero value 
at 4=1 and 5 is the dimensionless thermal penetration depth 
having the value of V/-~. This approximate solution is in good 
agreement with the exact ones in the region of r~0.1, as shown 
in Fig. 2. 
2. Stabil ity Equations  

Under the linear stability theory disturbances caused by the 
onset of thermal convection can be formulated, in dimensionless 
form, in terms of the temperature component 0~ and the vertical 
velocity component w, by transforming Eqs. (1)-(3): 

{ l r  0~- - V~}V~wh = -- V~20~ (11) 
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0O~0v ~- Ralw~z~ = ~20J (12) 

0 ~ 0 ~ O~ - . =  0___2_ ~ 0" 
where V~ = ~ + ~-~ + 0z ~ and v~ ~ 0x ~ + ~ .  Here the veloc- 

ity component has the scale of a/d and the temperature compo- 
nent has the scale of av/(gf3da). The proper boundary conditions 
are given by 

W l = D W ~ : 0 1 = 0  at z = 0  (13a) 

w~=Dw~=D0~=0 at z = l  (13b) 

Our goaI is to find the critical time z, for a given Pr and Ra~ 
by using Eqs. (11)-(13). 

Based on the normal mode analysis, the amplitude functions 
w* and 0* are constructed as a function of ~(= z/g) only by as- 
suming periodic motion of disturbances in the form of regular 
cells over the horizontal plane: 

[-w~(v, x, y, z), 0,(t, x, y, z)] 
= [-52W*(~),  0*(~j ) ]  exp[i(a,x + a,y)] (14) 

where ~i" is the imaginary number. The horizontal wave number 
"a" has the relation of a = [ a , 2 + a f ]  ~/a By using these relations 
the stability equation is obtained from equations (11)-(13) as 

{(DZ-a*Z)z + ~rr (~D~-a*~D + 2a*2)}w *= --a'Z0 * (15a) 

(D 2 + 4~D-  a*-~)0 * = Ra*w*D00* (15b) 

where a*= a& Ra* = RaAat, D = d/dg and 00"= 00/z. It is assumed 
that a* and Ra* are the eigenvalues, and also the onset time of 
buoyancy-driven convection for a given Ra~ is unique under the 
principle of exchange of stabilities. The above procedure is the 
essence of our propagation theory. 
3. S o l u t i o n  P r o c e d u r e  
3-1. In the Case of p r - .m  

The stability equation derived in Eq. (15) still involves mathe- 
matical complexity. This problem can be alleviated by dealing 
with very high and very low Prandtl numbers. Let us consider 
the very. high Pr case, first. Then the stability equations reduce 
to 

(D ~ + 4 0 ) -  a*0(D ~ -  a*2)2w * = 3a*~Ra*(1 - 2~ + r 
for 0 ~ 1  (16a) 

(D 2 + 4~D-  a*Z)(D ~ -  a*2)Zw * = 0 for ~ 1 (16b) 

The above equations are separated, depending on the range of 
~;. The boundary conditions can be converted to 

w * = D w * = ( [ F  a*2)w*=0 at {=0  (17a) 

w* = Dw* = D(D z -  a*~)w * = 0 at ~ = 1/g-+co (t7b) 

For a deep-pool system, the condition of ~= 1 corresponds to the 
basic thermal penetration depth, and i /8 is practically equivalent 
to an infinite high value since 5 is small. 

Within the thermal penetration depth (~K1) the velocity dis- 
turbance is approximated by means of rapidly converging power 
series proposed by Sparrow et al. [1964]: 

5 
w,*= X H,f,(O (18a) 

]=0 

f~(g)= Z ~g" (18b) 
n - o  

H 1 (j=0, 1, 2, 3, 4, 5) is an arbitrary coefficient needed in the 
sixth-order differential equation, and b s  can be obtained by sub- 
stituting Eq. (18) into Eq. (16a) as the following indicial form: 

~ =  (n-6) !  [t3a.2(n_ 2 ) ( n - 3 ) ( n - 4 ) ( n - 5 )  
n! 

- 4 ( n -  2 ) ( n -  3 ) ( n -  4)(n - 5 ) ( n -  6)tb~' :~ 
+ {8a*2(n - 4)(n - 5)(n - 6) - 3a*2(n - 4)(n - 5)/b~ ~ 4 
+ {a . 2 -  4"2(n - 6) - 3a*ZRa*}b~' ~ + 6a*2Ra*b~ r 
- 3a*2Ra*b~ ~ s] (!.9a) 

b~=8. j  (n=0. 1, 2, 3, 4, 5) : Kronecker delta (19b) 

b ~  = b~!~ = b ~  = b~)4 = b ~ s -  b~!s- b~7 = b~8 :: 0 (19c) 

Applying the boundary condition of ~=0 to Eqs. (18) and (19), 
the velocity disturbances inside the thermal penetration depth, 
~<1, can be expressed in the following form: 

w,* H2{f2(~)+~f4(~)} +Haf:r (20) 

In order to obtain the velocity disturbance for the region of ~2 1, 
it is helpful to consider the solution outside lhe thermal penetra- 
tion depth in two stages: 

(D 2 + 4~;D- a*2)Y = 0 (2 la) 

(D z - a*Z)Z',v. * = Y (21b) 

The WKB method can be used to obtain the solution of Y which 
satisfies the condition DY=0 as ~--~m. Then the solution of Y 
is given by [Mathews and Walker, 1973~: 

c, 
y ~ _ _  exp(--~)  exp{_ f,~/4~2 + 2 + a.:~d{} (22) 

4~/4~ + 2 + a .2 

The form of Y as is determined by the WKB method is very 
complicated. In order to find the particular solution of Eq. (21b) 
over the range of g21, ~ is converted as 

s = ~ -  1 (23) 

which provides the convergence in computer calculation. By using 
the initial values of Y and DY at r  1 the solution of Y is obtained 
in form of power series. The solution of the velocity disturbance 
outside the thermal penetration depth can be obtained by inverse- 
operator technique, as follows: 

Wo*= t17 e x p ( -  a ' s )+  H~s exp( a's) 

+ 4~-~exp(a  s) , :~ (n+ 1)(n+2) s" - 

+ e x p ( -  a 's) Z q" s "+'-' 
.-0 (n+ 1)(n+2) 

.,1-expfa*s) ~ - P" s " "  
a .--o (n+ 1) 

1 ~ q. s.+, } + ~ e x p ( -  a's) (24a) 
.=o (n+ 1) 

( n -  2)' . 
P " -  n7 "{(2a +4)(n 1)p. ~+4(n-2+a*)p .  , 

+ 4a*p. :~} (24b) 

P2 = - 1{(2a* + 4)p, + 4a*po} (24c) 
Z 

p, = Y'(1)-  a'Y(1) (24d) 

po-Y(1) (24e) 
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( n -2 ) ! ,  
q" n! /(4-2a*)(n--1)q. , + 4 ( n - 2 - a * ) q ,  2 

- 4a'q, 3t (240 

= - 1{(4 - 2a*)q, - 4a*qo} (24g) q2 

q~ = Y'(1) + a'Y(1) (24h) 

q0 = Y(1 ) (24i) 

The disturbance Eqs. (22) and (24) for velocities both inside 
and outside the thermal penetration depth are patched at g = l  
where the velocity, the stress and the temperature are all contin- 
uous in a physical sense. Mathematically, the expression for the 
velocity disturbance is an analytical function at the thermal pene- 
tration depth. Thus the following relations must be satisfied: 

D"w,* = D"w,, (n = 0, 1. 

The above relations can 

I f2+ (a*2/6)L f3 
Df2+ (a*2/6)Df4 Df3 

D2f2 + (a*2/6)I)2f4 D2f~ 
Daf2+ (a*2/6)D3L Daft 
D 4 f z +  ( a * 2 / 6 ) I ) 4 f  4 D4f:~ 
Daf2 + (a*2/6)DSf4 D~f:~ 

2, 3, 4, 5) at ~=1 (25) 

be expressed in matrix form as 

f s - 1  0 : ]  L [ H 2 ]  J 
Df,~ a .2 - 1 00 Ha 

D2f5 - a  *~ 2a* H5 
Dafs. a .3 - 3 a  .2 •  

D4f s - a  .4 4a .3 - -Y H9 
DSf5 a *-~ - 5 a  .4 --Y'A r ~ H1 

(26) 

To produce nontrivial solution of velocity disturbances, the deter- 
minant ef 6 •  matrix must be zero. The value of the determinant 
is determined by the two eigenvalue a* and Ra*. Therefore the 
computer calculation was carried out to obtain Ra* for a given 
a* .  

3-2. In the Case of Pr---)0 
Stability analysis for the very small Prandtl number case is 

basically similar to the case of Pr--->m. In the limiting case of 
Pr~0,  however, the viscous effects of amplitude function can be 
ignored in comparison to the convective effects. Also, boundary 
conditions shoukt be relaxed under the approximation of negligi- 
ble viscous effects. Therefore, the no-slip boundary conditions 
cannot be applied at ~=0. The resulting stability equations and 
their boundary conditions are reduced as follows: 

(D ~ + 4r - a*~)(~D :~- a*~g,D + 2a*2)w . . . .  3prRa*a*%1*(1 

for 0_<~_< 1 

(D e + 4r - a*2)(~D ~-  a*2r + 2a*2)w * = 0 

with boundary conditions 

w * = 0 * = 0  at { = 0  

w*=Dw*=D0*=0 as ~-*cc 

for ~->1 

- ~)~ 

(27a) 

(27b) 

(28a) 

(28b) 

The inner solution can not be easily obtained as the rapidly 
converging power series form because of the non-linear character- 
istic of convective term. Thus Frobenius method is applied in 
this study as follows: 

w,*= Z b,r (29) 
n = 0 

Substitution of Eq. (29) into (27a) makes the following indicial 
equation. 

c (c -  1)(c - 2)%: - 3) = 0 (30) 

Now, we can outline the form of the solution for the each induce 
"c" and obtain the solution as 5 independent series. 

wi* = Go{l-~_8(3prRa*a*2-2a'2)~4 + ..- } 

+G1 ~ - ~ ( 4 P r R a * a * 2 +  10a*2-a*')~s+'"t  

+ G2{~2 - 1 4 ~  (3prRa*a*2~6) + ... } 

q-- G 3 { ~ 3 - 1 ( 2  - a ' 2 )~5  q - . . .  } 

)} 
where coefficients G, (i= 0, 1, 2, 3, 4) are arbitrary constants. Un- 
der the boundary conditions that the velocity and temperature 
perturbations do not exist at the rigid-isothermal surface, Go and 
G4 are to be eliminated. 

The outer solution in the infinite domain can be obtained by 
separation Eq. (27b) into 

(D 2 + 4~) - a*Z)Y = 0 (32a) 

(D 2 -  a*2)(~D- 2)w,,* = Y (32b) 

The asymptotic '.solution of Eq. (32a) is the same as Eq. (22). By 
using this solution, we can obtain the outer amplitude function 
similar to the previous case. As the first step, the homogeneous 
solution of Eq. (32b) can be produced as 

, G5 , wo.h = ~ = { ( 1 - a  0 exp(-a*O+a*2~ff:exp(~ a*~) d~} (33) 

And, Eq. (32a) is transformed into those of s = ~ - l .  Then the 
solution of Y is generated as the forms of exp(a*s)p(s) and exp 
( -  a*s)q(s), p(s) and q(s) are the power series forms as the func- 
tion of s, whose coefficients are dependent of the asymptotic solu- 
tion. Consequently Eq. (32b) can be written through the operator 
technique as 

~(s+DD*-2two*=-:r=%xp(a*s) 2: P" s "+~ 
" - - ' ' . - * t - - z a  .=o n + l  

- e x p ( -  a's) Z q" s" + 1~ (34) 
.:o n + l  ) 

with po=qo=Y(1), p~=Y'(1)-a*Y(1), and q~=Y'(1)+a*Y(1). For 
n>2, the recursion formula for p. and q. can be easily constructed, 
and are identical with Eq. (24). The particular solution is obtained 
in the form of 

w,,.p* = exp(a*s) 2: d,s" + exp( -  a's) Z e,s" (35a) 
n 0 n 0 

dll = dl= 0 (35b) 

d2 G~ Po (35c) 
2a* 2 

G6 I . 
d:, = 2a* ~ { P , -  a Po/ (35d) 

1 { G~ p, ( n -  l+a*)d , .1 -a*d ,}  for n~2 (35e) 
d"+2= n + 2  2 ~  n + l  

eo = el - 0 (350 

Gs q0 e2 = (35g) 
2a* 2 
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Fig. 3. Neutral stability curve for the infinite Prandtl number. 
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Fig. 4. Neutral stability curve for the zero Prandtl number. 

G6 1 {ql-a*qo} (35h) 
e 3 :  2a* 6 

1 ~G6 q. ( n _ l + a , ) e . + l _ a , e ~ .  for n~2 
e"" 2 :  - n - ~ 2  (2a--; n + l  

(35i) 

The outer solution can be obtained as Wo*=Wo.h*+Wo.p*. Since 
the solution to satisfy all the boundary conditions are found in 
the whole domain, the following equation to characterize the onset 
of convection is generated by using Eq. (25) as the previous case: 

DG It~ DG (~} DG ~3~ a*e-~*-a*2E, ~ G2 
D2G (1~ IYG 12) D2G ~3~ -a*2E, X G3 =0  
I)3G ~ D3G r D3G I~ a*2e-~* - G5 [ 
D4G(IlD4G (21 D4G I3) -(a*3+a*2)e ~ -Y'+YJr J L G6 3 

(36) 

where G ~ (i=0, 1, 2, 3, 4) is a infinite series with respect to 

Gi in Eq. (31) and E,=J:  {exp(-a*~)/~t/d~. The value of E, can 

be obtained by using IMSL subroutine library. PrRa* results from 
the condition that the determinant of resulting 5X5 square matrix 
is equal to zero. The minimum value of PrRa* in the plot of PrRa* 
vs. a* is the critical condition to mark the onset of natural convec- 
tion for extremely small Prandtl number, 

STABILITY R E S U L T S  

The marginal stability curves obtained from computer calcula- 
tion are shown in Figs. 3 and 4. And the critical condition fl)r 
the onset of buoyancy-driven convection are 

Ra~*= 1062.50 and a,.*= 1.93 for Pr---~oo (37a) 

PrRa,*=435.70 and a,.*=2.79 for Pr---,0 (37b) 

From the aboves, onset time z,- are expressed as 

~,-=4.66Ra~ 2,.~ for Pr~oo (38a) 

z~ = 3.26(PrRar) -vs for Pr--*0 (38b) 

Based on the results for the limiting cases, the stability criteria 

for a deep-pool system may be roughly constructed as 

Ra~*= 1062.50(1 + ~ r  1 ) (39) 

Therefore, the onset time of buoyancy-driven convection may 
have the following relation: 

~=4.66(1+~rl)2": 'Ra~ 2/~ for ~,K0.1 (40) 

Fluid properties of in term of the Prandtl number have a profound 
effect on the stability conditions; smaller Prandtl number fluids 
are more stable due to dominant conducting effects. 

Foster F1969~ proposed that the onset time of natural convec- 
tion obtained by using the thermal penetration depth as a length 
scaling factor should be shortened by factor of 4. Considering 
Foster's concept, we suggest that the disturbances set in at z,. 
will manifest themselves around 4~,.. Thus, we foretell the onset 
time when the convective motion can be detectable experimen- 
tally, ~,,, as follows: 

0.41 ~z~ z,5 
~,,= 18.64(1 + ~ - r  ] Rat (41) 

The relationship ~o = 4z, can be seen in many other systems [-Yoon 
and Choi, 1989; Choi et al., 19883. 

H E A T  T R A N S P O R T  

The possibility of connecting the stability criteria to fully-devel- 
oped turbulent thermal convection has been discussed by Howard 
[1964]. According to Howard's concept called the boundary-layer 
instability model, the heat transport in fully-developed turbulent 
state is governed by the narrow region of the heated surface 
for systems heated isothermally from below. Its modification ex- 
tending Howard's concept is shown in Fig. 5. 

From the boundary layer instability model the Nusselt number, 
Nu=Sd2/kAT can be expressed as follows: 

Nu= d for R a f ~  (42) 

where 5, is the conduction thickness. This may be replaced by 

Korean J. Ch. E.(Vol. 13. No. 2) 
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d 

, conduction layer ,! 
turbulent core 

Fig. 5. Simple dial;ram of turbulent heat transport model, 

T1 

dT = 0  
dZ 

&. following Howard's concept where & is thermal penetration 
depth at the onset condition of buoyancy-driven convection. Thus, 
by using the relation of Ra~=RaNu Eq. (42) can be expressed 
a s  

( Ra/ tl/4 
Nu= for Rac-)oo (43) 

where Ra,~ is represented by 

g138c3AT l+ 
Ra,~,- (44) 

(IV 

ATI~ is the temperature difference across the boundary layer 
and can be expressed as 

S: 
ATI+ = -  (45) 

k 

From the Eqs. (44) and (45) Raa+ can be substituted by Ra*. Then 
the heat transport in the fully-developed state is go+erned by 

0.1752Ra~ TM 
N u -  for Ra1-*m (46) 

(1 + 0.41/Pr) 1:4 

Arpaci [-1994] proposed the backbone equations to predict the 
heat transport for the horizontal fluid layer heated below. By mod- 
ifying the Arpaci's results, a new backbone equation to govern 
the buoyancy-drwen heat transport in the present system can 
be obtained as t01lows: 

/ Pr \1,,4 
A ~ -" / /Ral/4_Ra u4~ 

\ . C + P r /  ~ l t, * 
Nu=24  for Ra~>RaL (47) 

1 Dr ~/9 , :., 

where A, B and C are the undetermined constants. It is noted 
that N u = 2  for Paz_<Ra~,(=2772), where Ra~, is the critical Ray- 
leigh number to mark the onset of buoyancy-driven convection 
in the present system. From the result of heat transfer relation 
of infinite Rayleigh number case, A and C can be determined 
easily. For the infinite Rayleigh number, the values of A and C 
in Eq. (47) can be determined from Eq. (46) as 0.1752 and 0.41, 
respectively. 

The finite-amplitude heat transfer characteristics slightly over 
Rat, can be obtained by using the shape assumption of Stuart 
[1964~. For the region of RaT*Rat,, Roberts [1967] expressed 
the Nusselt number as 

2 ~al (Ra/-  Ral,) (48) ~uu = l -  

The constant F is obtained from the distribution of disturbance 
quantities at Ra=Ra~: 
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Fig. 6. Predicted heat transfer correlation and existing experimental 
data. 

2fi ,01dzflw 0,dz 
F-- -0.5994 (49) 

j't(wl0,)~dz 

Thus from the Eqs. (48) and (49), we obtain the following relation: 

dNu [ Ra/--Ralc'- 2F (50) 
dRat . Ral.c 

The above relations have its meaning for large Prandtl number. 
It is interesting that only one initial slope of Nu with respect 

to Ra~ is necessat 7 to determine the numerical value of B. Assem- 
bling the Eq. (46), (47) and (50), we can derive a new heat transfer 
correlation for the whole range of Ra~ as: 

0.1752(Rat 1/4 - 27721/4) 
Nu=2-~ 

(1 + 0.41/Pr)E 1_ 1.8535(1 + 0.41/Pr)~(RajNu) v9]:~/4 
for Rai>2772 (51) 

The proposed correlation covering the whole range of Pr is com- 
pared with the experimental results of water. The above equation 
for water (Pr= 7) predicts the heat transport quite well, as shown 
in Fig. 6. 

CONCLUSION 

The onset of regular cell-type motion in a horizontal fluid layer 
with uniform volumetric energy sources has been studied analyti- 
cally by using linear stability theory. Our propagation theory pre- 
dicts that the onset time of buoyancy driven motion is a function 
of the Rayleigh number and Prandtl number. Also, based on the 
boundary-layer instability model and Arpaci's model, heat transfer 
characteristics of the layer are predicted as a function of the Ray- 
leigh number and Prandtl number. These results show that the 
propagation theory we have developed is a powerful tool in ana- 
lyzing buoyancy-driven phenomena. 
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