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Abstract —Buoyancy effect in an internally heated horizontal fluid layer is considered under the linear stability
analysis. The horizontal fluid layer is confined between a rigid adiabatic lower boundary and a rigid isothermal upper
boundary. The onset of thermal convection is analyzed by using the propagation theory which transforms partial
disturbance equations into ordinary ones similarly under the principle of exchanges of stabilities. The eigenvalue
problem is solved by the method of rapidlv converging power series. In addition, the connection of stability condition
to the fully developed heat transport is investigated. Results show that the critical time to mark cellular convection
has increased with a decrease in the Prandtl number. Based on the present stability criteria, a new correlation of
the Nusselt number is produced as a function of both the Rayleigh number and the Prandtl number. It is shown
that the present correlation on thermal convection compares reasonably with existing experimental data of wa-

ter.
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INTRODUCTION

From the beginning of this century the convective motion driv-
en by buoyancy forces has attracted many researchers’ interests.
Benard [1901] conducted systematic experiments on the onset
of natural convection in a horizontal fluid layer. Later, Lord Ray-
leigh [1916] showed that the buoyancy-driven convection can oc-
cur when the adverse temperature gradient exceeds a certain
critical value. Thereafter, many researchers analyzed the onset
condition of buoyancy driven convection in fluid lavers heated
from below or cooled from above. Extensive results for the var-
ious systems have been summarized by Chandrasekhar [1961]
and Berg et al. [1974].

Kulacki and Goldstein [1975] extended the stability analysis
to the horizontal fluid layer heated by internal heat sources. It
is well-known that thermal convection problems driven by energy
release from distributed volumetric energy sources appear to play
an important role in wide variety of engineering applications, such
as geothermal reservoirs, chemical reactors and heat removal of
nuclear power plants.

When an initially quiescent horizontal fluid layer system is heat-
ed rapidly, buovancy-driven motion sets in before the basic tem-
perature field is fully-developed. Therefore, in case of rapid heat-
ing the basic temperature profile of pure conduction becomes
time-dependent. To analyze this kind of thermal instability in hor-
izontal fluid layers several theoretical methods have been pro-
posed: the amplification theory [Foster, 1965], the energy method
[Wankat and Homsy, 1977], the stochastic model [Jhavery and
Homsy, 1982] and the propagation theory [Choi et al, 1984].
The amplification theory treated the time dependency as an initial
value problem. This method is quite popular, but it involves arbi-
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trariness in choosing both an initial condition and its amplification
factor to mark the onset of motion. The propagation theory pre-
dicts the conditions to mark the onset time deterministically. it
employs the thermal penetration depth as a length scaling factor
and transforms the linearized disturbance equations into the simi-
lar forms. Its prediction has been coincident with the various ex-
perimental results in deep-pool systems experiencing rapid heat-
ing, such as laminar forced convection [Kim et al, 1990; Choi
and Kim, 1990], laminar natural convection [Chun and Choi,
1991] and also double-diffusive convection [Yoon et al. 1995].

Another important problem in buoyancy-driven phenomena is
the heat transfer characteristics in thermally fully-developed state.
To analyze this problem Howard [1964] proposed the boundary-
layer instability model in which the heat transfer for very high
Rayleigh numbers has a close relationship with stability criteria.
Based on Howard's concept, Long [1976] and Cheung [1980]
introduced backbone equations to predict the heat transport in
horizontal fluid layers. By incorporating their stability criteria into
the boundary layer instability model Choi et al. [1989] and Kim
and Choi [1992] have derived new heat transfer correlations for
various systems. Based on the microscales of turbulent flow Ar-
paci [1994] proposed a new buoyancy-driven heat transfer model
for fully developed-turbulent state.

In the present study, the stability criteria of the onset of regular
cell-type motion in a horizontal fluid layer with uniform energy
sources is analyzed by using our propagation theory. And based
on the stability criteria and Arpaci’s heat transfer model, a new
heat transfer correlation is derived and also compared with the
existing experimental results. This research shows that the pro-
pagation theory we have developed can become a theoretical base
in understanding buoyancy-driven phenomena.
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Fig. 1. Schematic diagram of the present system.

STABILITY ANALYSIS

1. Governing Equations

The system considered here is an initially quiescent horizontal
fluid layer of depth “d” with an adiabatic lower boundary and
isothermal upper boundary. Before heating the fluid layer is main-
tained at uniform temperature T, for time t<0. For time t>0
the layer is heated internally with the uniform volumetric heat
generation rate S. Here we employ the Cartesian coordinates with
the downward distance Z. The schematic diagram of present sys-
tem is shown in Fig. 1. In this system the governing equations
of flow and temperature fields are expressed by employing the
Boussinesq approximation, as follows:

v-U=0 (1)

o . = - 1 - -
Z+U- VU= ——VP+vW2U+gBTk (2)

{§+U-V}T=(1V2T+

oC, &)
where U is the velocity vector, T the temperature, P the pressure,
u the viscosity, a the thermal diffusivity, g the gravitational accel-
eration, p the density, C, the specific heat, B the thermal expan-
sion coefficient. The subscript “r” represents the reference state.

The important parameters to describe the present system are
the Prandtl number Pr and the Rayleigh number Ra, defined
by

gpSd®

Pr=- and Ra,=
a kav

4
where k and v denote the thermal conductivity and the kinematic
viscosity, respectively. In case of slow heating the basic tempera-
ture profile is parabolic and time-independent and its critical con-
dition is well represented by

Ra, =2,772 5)

But for a rapid heating system of large Ra,, the stabilitv problem
becomes transient and complicated, and the critical time t, to mark
the onset of buoyancy-driven motion remains unsolved. For this
transient stability analysis we define a set of nondimensional var-
iables t, z, 8, by using the scale of time d%/a, length d and temper-
ature Sd%k. Then the basic conduction state is represented in
dimensionless form by

B _ 0 ®)
ax or

with the following initial and boundary conditions,

8,0, 2)=6u(x. 0):‘%0 (x, D=0 @
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Fig. 2. Basic temperature profile.

By using the conventional separation-of-variables technique, the
above conduction equation can be solved as follows:

i zy 16 1 f{@n+])

% Z(l 2) 5 (2n+1)5‘“{ 2 o}

_ (2n+1yn? }
4 T

X exp{ (8)
For deep-pool systems, the Leveque-type solution can be obtained
as follows [Carslaw and Jaeger, 1959]:

T eI o I

where n:z/\/;. Fig. 2 shows that the above equation is in accord
with the exact solution of (8) in the short period of time (t<0.1).
Therefore the solutions of (8) and (9) can be considered as exact
ones for deep-pool systems. And the Eq. (9) suggest that the pa-
rameter T](:Z/\/-t_) play important role in analyzing the onset of
thermal convection. Since we are primarily concerned with the
deep-pool case of large Ra, and small t, the above Leveque type
solution (9) represents the basic temperature profile quite well.
But for the mathematical convenience in the present stability anal-
ysis we simplify the basic temperature profile by using the inte-
gral method [Eckert and Robert, 1972] as follows:

Bo=1{1-(1—-0°1{1— U] 1o

where {=2/3-U; | is the unit step function having the zero value
at {=1 and & is the dimensionless thermal penetration depth
having the value of \/§ This approximate solution is in good
agreement with the exact ones in the region of t<0.1, as shown
in Fig. 2.
2. Stability Equations

Under the linear stability theory disturbances caused by the
onset of thermal convection can be formulated, in dimensionless
form, in terms of the temperature component 6, and the vertical
velocity component w, by transforming Egs. (1)-(3):

14
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36 2%

;C— + R31W15 = VZG, (12)
_ 2 2 2 _ 2 2
where V2= % + :? + % and V= a—axz + % Here the veloc-

ity component has the scale of a/d and the temperature compo-
nent has the scale of av/(gBd?. The proper boundary conditions
are given by

wi=Dw,=0,=0 at z=0 (13a)

w;=Dw,; =D, =0 at z=1 (13h)

Our goal is to find the critical time t, for a given Pr and Ra
by using Egs. (11)-(13).

Based on the normal mode analysis, the amplitude functions
w* and 0* are constructed as a function of {(=z/8) only by as-
suming periodic motion of disturbances in the form of regular
cells over the horizontal plane:

[wir, x, ¥, 2), 0%, X, ¥, 2)]
=[8w*(), 0*)] expli(ax +ay)] (14)

where “i” is the imaginary number. The horizontal wave number
“a” has the relation of a=[a’+a?]"? By using these relations
the stability equation is obtained from equations (11)-(13) as

{(DZ —a¥y+ 1";—1' CD*—a*(D+ 23"‘2)}w* = —a*%* (15a)

(D?+ 48D —a*")p* =Ra*w*Dg,* (15b)

where a*=ad, Ra*=Rab’, D=d/d{ and 8,*=6,/z. It is assumed
that a* and Ra* are the eigenvalues, and also the onset time of
buoyancy-driven convection for a given Ra, is unique under the
principle of exchange of stabilities. The above procedure is the
essence of our propagation theory.
3. Solution Procedure
3-1. In the Case of Pr—ow

The stability equation derived in Eq. (15) still involves mathe-
matical complexity. This problem can be alleviated by dealing
with very high and very low Prandtl numbers. Let us consider
the verv high Pr case, first. Then the stability equations reduce
to

(D*+ 4D — a*?)(D?—a*?yw* = — 3a**Ra*(1— 2{+ P)w*
for 0<(<1 (16a)

(D*+4LD — a*3)(D*— a**Pw* =0 for {1 (16b)

The above equations are separated, depending on the range of
§. The boundary conditions can be converted to

w*=Dw*=([D’—a*)w*=0 at (=0 (172)

w*=Dw*=D({D?—a*hw*=0 at {=1/b-w (17b)

For a deep-pool system, the condition of {=1 corresponds to the
basic thermal penetration depth, and 1/8 is practicallv equivalent
to an infinite high value since & is small.

Within the thermal penetration depth ({<1) the velocity dis-
turbance is approximated by means of rapidly converging power
series proposed by Sparrow et al. [19641:

5

w*= X Hf© (18a)
710

§O= I HX (18b)
#=0

H; =0, 1, 2, 3, 4, 5) is an arbitrary coefficient needed in the
sixth-order differential equation, and b,?” can be obtained by sub-
stituting Eq. (18) into Eq. (16a) as the following indicial form:

—6)
= [fga%n - 2 =30~ 4)n—3)
~4(n—2)(n—3)n—4)n—5Nn—6)bY ,
+{8a*(n—4)n—5)(n—6) - 3a**(n—4)(n— 5)}b‘,{’ .
+{a*—4*(n— 6)— 3a*Ra*/b? .+ 6a*Ra*b? .
—3a**Ra*b? ] (19a)
b¥=8,, m=0, 1, 2, 3, 4, 5) : Kronecker delta (19h)
b?,=b%,=b7,=b%, =% =" =1, =", =0 {19¢)

Applying the boundary condition of {=0 to Egs. (18) and (19),
the velocity disturbances inside the thermal penetration depth,
{<1, can be expressed in the following form:

*2
Wt =H{f0+ L} B+ Hiti© (20)

In order to obtain the velocity disturbance for the region of {1,
it is helpful to consider the solution outside the thermal penetra-
tion depth in two stages:

D+ 4D —a*)Y=0 (21a)
(DF—a*Pw*=Y (21b)
The WKB method can be used to obtain the solution of Y which

satisfies the condition DY=0 as {—>c. Then the solution of Y
is given by [Mathews and Walker, 1973]:

~_exp(8) [ aEm
Y= 4\/W exp{ fl 4§2+2+a dé} (22)

The form of Y as is determined by the WKB method is very
complicated. In order to find the particular solution of Eq. (21b)
over the range of {21, £ is converted as

s=(—-1 (23)

which provides the convergence in computer calculation. By using
the initial values of Y and DY at (=1 the solution of Y is obtained
in form of power series. The solution of the velocity disturbance
outside the thermal penetration depth can be obtained by inverse-
operator technique, as follows:

w,*=H; exp(—a*s)+Hss exp(—a*s)

Hy, - P N
+ * ___—.___SYI 2
4a*¥ {e"p(a O E GiDnT2)

ol x 9
+ — ¥ _h__sn+,
exp(—a™s) X < D)

. l * 5 R _p” U
a*exp(a s) E{) s
B S-S U
+a*exp( a*s) EO (n+1)s } (24a)
p— 1
= —i”n—,Z)' l(2a* +4)n— Dp, 1+ 4(n—2+a*)p, »
+4a*p,- :x} (24b)
Pe=— %{(2a*+4)p, + 42*po} (24¢)
p=Y'(1)—a*Y(1) (24d)
p=Y(1) (24e)

Korean J. Ch. E.(Vol. 13, No. 2)



168 M.C.Kim et al

= —%{(4—221*)01— Ve + 40— 2~ 2%,

—4a*G,f (24f)
q= 5 la—2a0a — t2ar (24g)
G =Y (1)+a*Y(1) (24h)
@=Y(D) (24i)

The disturbance Egs. (22) and (24) for velocities both inside
and outside the thermal penetration depth are patched at {=1
where the velocity, the stress and the temperature are all contin-
uous in a physical sense. Mathematically, the expression for the
velocity disturbance is an analytical function at the thermal pene-
tration depth. Thus the following relations must be satisfied:

D'w*=D"w, (n=0, 1. 2, 3, 4, 5) at {=1 (25)
The above relations can be expressed in matrix form as

fo+ (a*/6)1, i 5 —1 0 0
Df.+(a**/6)Df, Df; Dy a* -1 0 H;
D%, +(a*/6)D, D*; D*; —a** 2a* 0
D3, + (a*/6)D, D, D, a** —3a* 0
DY, +(a*/6)D, Dy D*s —a** 4a®® -Y H,

D, + (a*/6)D%f, D°f; D°f; a* —5a* —Y'ud oy LH;
(26)

To produce nontrivial solution of velocity disturbances, the deter-
minant of 6X6 matrix must be zero. The value of the determinant
is determined by the two eigenvalue a* and Ra* Therefore the
computer calculation was carried out to obtain Ra* for a given
a*.
3-2. In the Case of Pr—0

Stability analysis for the very small Prandtl number case is
basically similar to the case of Pr—co. In the limiting case of
Pr—0, however, the viscous effects of amplitude function can be
ignored in comparison to the convective effects. Also, boundary
conditions should be relaxed under the approximation of negligi-
ble viscous effects. Therefore, the no-slip boundary conditions
cannot be applied at {=0. The resulting stability equations and
their boundary conditions are reduced as follows:

(D*+4LD — a**}({D? —a*¥* D+ 2a*)w* = — %PrRa“a*zw*(l -y
for 0<{<1 (27a)

(D*+4(D - a*2(CD*— a**D+ 2a*)w*=0  for {21 (27b)
with boundary conditions

wr=0*=0 at {=0 (28a)

w*=Dw*=D0*=0 as {(—wx (28b)

The inner solution can not be easily obtained as the rapidly
converging power series form because of the non-linear character-
istic of convective term. Thus Frobenius method is applied in
this study as follows:

w*= 2 b 29)
n=0

Substitution of Eq. (29) into (27a) makes the following indicial
equation.

clc— De—2Y(c—3)=0 (30
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Now, we can outline the form of the solution for the each induce
“c” and obtain the solution as 5 independent series.

w*= Go{l - Z;(%PrRa"a"‘2 — 2"+ - }

+G‘{§_3}E (%P rRa*a*2+10a*2— a*)(*+ }‘

1
1440

FGifo- e am

+ GQ{CZ - (%PrRa*a”Cﬁ) + }

*2
+G4{(c2-~ﬁ14;6—§«PrRa*a*Zcﬁ+---)1nq+(%c4+---)} @1
where coefficients G; (1=0, 1, 2, 3, 4) are arbitrary constants. Un-
der the boundary conditions that the velocity and temperature
perturbations do not exist at the rigid-isothermal surface, G, and
G, are to be eliminated.

The outer solution in the infinite domain can be obtained by
separation Eq. (27b) into

(D*+4ED-a*)Y=0 (32a)
D*—a*)CD—2w,*=Y (32b)

The asymptotic solution of Eq. (32a) is the same as Eq. (22). By
using this solution, we can obtain the outer amplitude function
similar to the previous case. As the first step, the homogeneous
solution of Eq. (32b) can be produced as

— %

wat= {000 exp-ap +ap [ o @y
And, Eq. (32a) is transformed into those of s={—1. Then the
solution of Y is generated as the forms of exp(a*s)p(s) and exp
(—a*s)q(s). p(s) and q(s) are the power series forms as the func-
tion of s, whose coefficients are dependent of the asymptotic solu-
tion. Consequently Eq. (32b) can be written through the operator
technique as

#(S+ DD*— Z}W,,* — Gs {CXI;(EI*S) - Pr gl

2a* =9 N+ 1
— g% v i n+l}
exp(—a*s) EO 1S (34)

with pp=q=Y(1), p:=Y'(1)—a*Y(1), and q.=Y'(D)+a*Y(1). For
n22, the recursion formula for p, and g, can be easily constructed,
and are identical with Eq. (24). The particular solution is obtained
in the form of

w,,*=exp(a*s) EO d,s" +exp(—a*s) E‘.O e,s” (35a)
dy=d=0 (35b)
d2= % % (35¢)
d:a:%’; %{pl —a*pot (35d)
dy o= ni2 {% i (0= 1+a%d,.i- a%d,} for n22 (35)
es=e; =0 (35f)
o= n (359)
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Fig. 3. Neutral stability curve for the infinite Prandtl number.

Gs 1

€3= o E‘{(h‘a*q& (35h)
— -_l_ Eﬁ_ i_ _ * ¥
€p-2= n+2{2a* 1 (n—1+a%e,.1—a e,,} for n22

(351)

The outer solution can be obtained as w,*=w,,*+w,,* Since
the solution to satisfy all the boundary conditions are found in
the whole domain, the following equation to characterize the onset
of convection is generated by using Eq. (25) as the previous case:

G GO G —(e *—e+a*E)2 0 G
DG DG® DG® a*e *—a*%E, 0 G,
D*G D2GP DAG® —a*E, 0 X[ G31=0
DG DGR DIG® a%ea* —-Y Gs
DGO DG® DG® —(@®+atde ™ —Y'+Yl., LG
(36)

where G (=0, 1, 2, 3, 4) is a infinite series with respect to
G: in Eq. 31) and E;= fs lexp(—a*®)/&/de. The value of E; can

be obtained by using IMSL subroutine library. PrRa* results from
the condition that the determinant of resulting 5X 5 square matrix
is equal to zero. The minimum value of PrRa* in the plot of PrRa*
vs. a* is the critical condition to mark the onset of natural convec-
tion for extremely small Prandt]l number.

STABILITY RESULTS

The marginal stability curves obtained from computer calcula-
tion are shown in Figs. 3 and 4. And the critical condition for
the onset of buoyancy-driven convection are

Ra*=1062.50 and a*=1.93 for Pr—o (37a)
PrRa*=435.70 and a*=2.79 for Pr—0 37h)
From the aboves, onset time t, are expressed as

t.=4.66Ra;, **

t.=3.26(PrRay) ~%°

for Pr—w (38a)
for Pr—0 (38b)

Based on the results for the limiting cases, the stability criteria
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Fig. 4. Neutral stability curve for the zero Prandtl number.

for a deep-pool system may be roughly constructed as

Ra*= 1062.50( 1+ 041 ) (39)
Pr
Therefore, the onset time of buoyancy-driven convection may
have the following relation:
041\25 .

tr:4.66(1+#> Ra; 2 for 1,<0.1 (40)
Fluid properties of in term of the Prandtl number have a profound
effect on the stability conditions; smaller Prandtl number fluids
are more stable due to dominant conducting effects.

Foster [1969] proposed that the onset time of natural convec-
tion obtained by using the thermal penetration depth as a length
scaling factor should be shortened by factor of 4. Considering
Foster's concept, we suggest that the disturbances set in at t.
will manifest themselves around 4r,.. Thus, we foretell the onset
time when the convective motion can be detectable experimen-
tally, t, as follows:

2/5
r,,=18.64<1+0'—41~> Ra, 2 1)
Pr .
The relationship t,=4t. can be seen in many other systems [Yoon
and Choi, 1989; Choi et al., 1988].

HEAT TRANSPORT

The possibility of connecting the stability criteria to fully-devel-
oped turbulent thermal convection has been discussed by Howard
[1964]. According to Howard’s concept called the boundary-iayer
instability model, the heat transport in fully-developed turbulent
state is governed by the narrow region of the heated surface
for systems heated isothermally from below. Its modification ex-
tending Howard’s concept is shown in Fig. 5.

From the boundary layer instability model the Nusselt number,
Nu=Sd*kAT can be expressed as follows:

d

Nu=—

for Raj»>o0 42)
S5*

where &* is the conduction thickness. This may be replaced by

Korean J. Ch. E.(Vol. 13, Ne. 2)
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Fig. 5. Simple diagram of turbulent heat transport model.

& following Howard’'s concept where &, is thermal penetration
depth at the onset condition of buoyancy-driven convection. Thus,
by using the relation of Ra;=RaNu Eq. (42) can be expressed
as

Nu= (—RE’“)W

Ra for Ray>w 3)

where Ras is represented by

3
Ray — £887ATI

¢ [eAY 44)

AT|; is the temperature difference across the boundary layer
and can be expressed as
AT|,==5 45)
k
From the Egs. (44) and (45) Ra;_can be substituted by Ra* Then
the heat transport in the fully-developed state is governed by

14
Nu= 0.1752Ra,

=1 04UPD for Ray»oc (46)

Arpaci [1994] proposed the backbone equations to predict the
heat transport for the horizontal fluid layer heated below. By mod-
ifying the Arpaci’s results, a new backbone equation to govern
the buovancy-driven heat transport in the present system can
be obtained as follows:

Pr oo
A e ) o Ry

Nu=2+

for Ra;>Ra;,, (47)

where A, B and C are the undetermined constants. It is noted
that Nu=2 for Ra,<Ra;(=2772), where Ra;. is the critical Ray-
leigh number to mark the onset of buoyancy-driven convection
in the present system. From the result of heat transfer relation
of infinite Rayleigh number case, A and C can be determined
easily. For the infinite Rayleigh number, the values of A and C
in Eq. (47) can be determined from Eg. (46) as 0.1752 and 0.41,
respectively.

The finite-amplitude heat transfer characteristics slightly over
Ra;, can be obtained by using the shape assumption of Stuart
[1964]. For the region of Ra—~Ra,,, Roberts [1967] expressed
the Nusselt number as

%:lARLa[(Ra,—Ra,_() (48)
The constant T is obtained from the distribution of disturbance
quantities at Ra=Ra:
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Fig. 6. Predicted heat transfer correlation and existing experimental
data.

1
Zf ZW]B[delwlele
r: 0 0

=0.5994 (49)
1
jn(wle])zdl
Thus from the Egs. (48) and (49), we obtain the following relation:

dNu _.ar
dRa, Ray—~Raj, Ra,,c

(50)

The above relations have its meaning for large Prandtl number.

It is interesting that only one initial slope of Nu with respect
to Ra, is necessary to determine the numerical value of B. Assem-
bling the Eq. (46), (47) and (50), we can derive a new heat transfer
correlation for the whole range of Ra; as:

0.1752(Ra;* — 277214y
(1+0.41/Pr)[1—1.8535(1 + 0.41/Pr)"*(Ra,/Nu)~ *J*
for Ra;>2772 (51)

Nu=2+

The proposed correlation covering the whole range of Pr is com-
pared with the experimental results of water. The above equation
for water (Pr=7) predicts the heat transport quite well, as shown
in Fig. 6.

CONCLUSION

The onset of regular cell-type motion in a horizontal fluid layer
with uniform volumetric energy sources has been studied analyti-
cally by using linear stability theory. Our propagation theory pre-
dicts that the onset time of buoyancy driven motion is a function
of the Rayleigh number and Prandtl number. Also, based on the
boundary-layer instability model and Arpaci’s model, heat transfer
characteristics of the layer are predicted as a function of the Ray-
leigh number and Prandt]! number. These results show that the
propagation theory we have developed is a powerful tool in ana-
lyzing buoyancy-driven phenomena.
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